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Abstract. Antihydrogen has recently been produced in collisions of antiprotons with ions. While passing
through the Coulomb field of a nucleus an antiproton will create an electron-positron pair. In rare cases
the positron is bound by the antiproton and an antihydrogen atom produced. We calculate the production
of relativistic antihydrogen atoms by bound-free pair production. The cross section is calculated in the
semiclassical approximation (SCA), or equivalently in the plane wave Born approximation (PWBA) using
exact Dirac-Coulomb wave functions. We compare our calculations to the equivalent photon approximation
(EPA).

I Introduction

Antihydrogen, the simplest bound state of antimatter, has
first been produced and detected in 1995 at CERN in the
Low Energy Antiproton Ring (LEAR) [1]. The synthesis
of an antiproton and a positron has been done by pass-
ing relativistic antiprotons through a xenon target. Only
a few electron-positron pairs are produced in these colli-
sions. In rare cases the velocities of the outgoing positron
and antiproton are sufficiently close together, so that the
particles join. In lowest order the formalism for calculating
the production of antihydrogen is the same as the one used
to study bound-free pair production in ion-ion collisions.
Bound-free pair production is an important process as it
is one of the reactions limiting the luminosity of heavy
ion beams in high energy colliders [2]. The equivalent-
photon approach (Weizsäcker-Williams method) has been
used for the calculations of antihydrogen in [3] and for
electron capture by a heavy ions in [4,5]. It is of interest
to perform exact calculations in the framework of SCA or,
equivalently, PWBA theory and compare them with these
calculations, especially at low energies of the colliding par-
ticle. The bound-free pair production by bremsstrahlung
has been considered in [6] and was found to be negligible.
A recent calculation of Baltz shows that contributions of
higher order effects reduce the cross section given in lowest
order perturbation theory by a small amount for γ → ∞
[7].

II Total cross section

The total SCA cross section for pair production with elec-
tron capture in a heavy ion collision is given by [8]

σtot = 8π
(
ZPα

β

)2 ∞∫
me

dEi

∞∫
qz

ds
s

[s2 − (βqz)2]2
(1)

×
∑
κi

∑
mi,mf

∣∣〈ψf (r)
∣∣(1 − βα3)eiqr

∣∣ψi(r)
〉∣∣2 .

Throughout the paper we will set h̄ = c = 1. The charge
numbers of the projectile and target are denoted by ZP

and ZT ; the velocity of the projectile in the target rest
frame is given by β. The momentum transfer from projec-
tile to target is q whose absolute value is given by s = |q |.
The component of q in the direction of the projectile is
qz = ω

β = Ef −Ei

β . The total energy of the bound elec-
tron is Ef ; the one of the positron in the continuum |Ei|.
(Please note that Ei is negative.) The third component of
the Dirac matrices is α3. In our calculation ψf (= ψ

mf
κf )

is the Dirac-Coulomb wave function of a K-shell electron
(κf = −1, Ef = me

√
1 − ζ2 with ζ = αZT and magnetic

quantum number mf ). ψi (= ψmi
κi

) is the wave function
of an electron with negative energy Ei in the continuum
describing the positron [8].

Because of charge-conjugation invariance the same for-
malism is used to calculate the production of relativis-
tic antihydrogen in the bound-free process: p + ZP →
H(1s) + ZP + e−.

Using current-conservation we can write (1) as:

σtot = 8π
(
ZPα

β

)2 ∞∫
me

dEi

∞∫
qz

ds s
∑
κi

∑
mi,mf

(2)

×
∣∣∣∣
〈
ψf (r)

∣∣∣∣
(

1
s2

− β⊥α
s2 − (βqz)2

)
eiqr

∣∣∣∣ψi(r)
〉∣∣∣∣

2

.

It should be mentioned that (1) and (2) are not exactly
equal if the wave functions are not exact eigenfunctions of
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the Dirac Hamiltonian [8,9]. The vector β⊥ is perpendic-
ular to q and defined by

β⊥ = β −
(
β
q
s

) q
s

. (3)

The solutions of the Dirac equation in the Coulomb
field

V (r) = −ζ

r
, ζ = αZT (4)

are given by [8,10]

ψm
κ =

(
gκ(r)χm

κ (r̂)
ifκ(r)χm

−κ(r̂)

)
. (5)

The angular dependence is expressed by the spin-angular
functions

χm
κ (r̂) =

∑
τ=± 1

2

(−1)l+m− 1
2
√

2j + 1 (6)

×
(

l 1
2 j

m− τ τ −m
)
Y m−τ

l (r̂)χτ .

χτ are Pauli spinors and

j = |κ| − 1
2
, l = j +

1
2
sgn(κ) . (7)

The radial functions gκ and fκ for the bound state are(
g−1(r)
f−1(r)

)
= a

− 3
2

0
(2ZT )γ(−1)+ 1

2

[2Γ (2γ(−1) + 1)]
1
2

(8)

×
(−(1 + γ(−1))

1
2

(1 − γ(−1))
1
2

)(
r

a0

)γ(−1)−1

e− ZT r

a0

with the Bohr radius denoted by a0. For the continuum
we use the radial functions(
gE,κ(r)
fE,κ(r)

)
=
(
E +me

E −me

) 1
4 k

π
1
2
N (kr)γ(κ)−1

×
(

Re

sgn(E)
√

E−me

E+me
Im

)
(9)

×
[
e−i(kr+φ)

1F1(γ(κ) + iη, 2γ(κ) + 1, 2ikr)
]

which are normalized according to∫ ∞

0
dr r2 [gE,κ gE′,κ + fE,κ fE′,κ] = δ(E − E′) . (10)

In (8) and (9) γ(κ), k, η and N are given by

γ(κ) =
√
κ2 − ζ2, k =

√
E2 −m2

e, η =
ζE

k
,

N =
2γ(κ)e

πη
2 |Γ (γ(κ) + 1 + iη)|
Γ (2γ(κ) + 1)

. (11)

We rewrite the expression in parenthesis in the matrix
element of (2) in the spherical basis (e0, e±1) with e0 =

q
s and use the expansion of the vector plane waves into
electromagnetic multipoles. From the orthogonality of the
spherical harmonics we get the incoherent sum over the
multipoles. After some algebra one obtains a relatively
simple expression for the cross section.

σK
tot = 32π2

(
ZPα

β

)2 ∞∫
me

dEi

∞∫
qz

ds (12)

×
{
Tl

s3
+
β2

2
s

[s2 − (βqz)2]2

(
1 − q2z

s2

)
T⊥

}
,

with Tl and T⊥ given by

Tl =
∑
κi,l

(2ji + 1)(2jf + 1)
4π

(2l + 1)
1
2
[
1 + (−1)lf +l+li

]
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1
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2

)2

, (13)
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∑
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4π
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2
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1
2
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l

) 1
2

× [(κf − κi) I+
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]

−
(

l
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2 [
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2}(

jf l ji
1
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2

)2

. (14)

The radial integrals are given by

J l(Ei, s) =

∞∫
0

dr r2jl(sr)

×[gκf
(r)gEi,κi(r) + fκf

(r)fEi,κi(r)] , (15)

I±
l (Ei, s) =

∞∫
0

dr r2jl(sr)

×[gκf
(r)fEi,κi(r) ± fκf

(r)gEi,κi(r)] (16)

and are evaluated quickly by the method presented in [11].

III Results

We focus our attention on the process p+ZP → H(1s) +
ZP + e−. In Fig. 1 and Table 1 the total cross section for
ZP = ZT = 1 is given as a function of the Lorentz γ-
factor of the projectile in the target rest frame. The cross
sections are calculated numerically with (12)–(16).

We compare our results with experimental data mea-
sured in the low energy region for La57+ target [14]. Our
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Fig. 1. The solid line shows the total cross section σK
tot for

antihydrogen production with a positron bound in the K-shell
(ZP = ZT = 1) as a function of the Lorentz γ-factor of the
projectile in the target rest frame. The dotted line presents the
part of (12) containing T⊥. The cross section scales with Z2

P

Table 1. The total cross section for antihydrogen production
(ZP = ZT = 1) is given for different γ’s of the projectile in
the target rest frame for the Fermilab experiment [12]. The K-
shell capture cross section is denoted by H(1s) and the cross
section for capture into all shells by H(all). The contribution
of all higher shells is estimated to 20% of the K capture [5,13]

γtarget rest frame σH(1s) [pb] σH(all) [pb]

5 5.73 ∗ 10−1 6.88 ∗ 10−1

6 7.90 ∗ 10−1 9.48 ∗ 10−1

7 1.00 1.20

calculations for K-shell bound-free pair production of
La57+ with projectile energies 0.405 GeV/u (γ = 1.43),
0.956 GeV/u (γ = 2.026), and 1.3 GeV/u (γ = 2.40) yields
σK/Z2

P = 9.93 ∗ 10−7b, 9.12 ∗ 10−6b, and 1.78 ∗ 10−5b, re-
spectively. Adding contribution from higher shells, which
are assumed to be about 20% [5,13], we find good agree-
ment with the experimental results. We also compare our
results with those of Becker [15]. Our results agree well
with the results given there for 1 GeV amu−1 (γ = 2.07)
and 15 GeV amu−1 (γ = 16.1). Our results for ZP = ZT =
1 are σK

tot = 3.92∗10−2pb and σK
tot = 2.55pb, respectively.

IV Correspondence to EPA

To compare (12) with the photoproduction cross section
we rewrite it as:

σK
tot = 16π2

(
ZPα

β

)2 ∞∫
me+Ef

dω

∞∫
0

d(q2⊥)
1

q2⊥ +
(

ω
β

)2
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Fig. 2. The cross section for antihydrogen production as a
function of ω. The solid line shows the cross section for the
Lorentz factor γ = 3 of the projectile in the target rest frame.
The dashed line shows the cross section for γ = 6 and the
dotted line for γ = 10

×




1

q2⊥ +
(

ω
β

)2Tl +
β2

2
q2⊥[

q2⊥ +
(

ω
βγ

)2
]2T⊥




(17)

with ω = Ef − Ei and q2⊥ = s2 − q2z ; qz = ω
β . σK

tot as a
function of ω is shown in Fig. 2.

The S-matrix element for photo-induced bound-free
pair production (also known as photo-induced K-shell cap-
ture) in Coulomb gauge is given by

Sfi = −ie
∫ ∞

−∞
dt
〈
ψf (r)|αeµe

ikr|ψi(r)
〉
ei(Ef −Ei−ω)t .

(18)
Using the multipole expansion for eµe

ikr we find the ex-
pression for the total cross section:

σK
γ (ω) =

8π3α

ω
T⊥(ω, q2 = 0) , (19)

where T⊥ is the same as in (14), with s = ω. Here we
denote the four-momentum of the photon by q. If in (17) Tl

is omitted, we can define the photo-induced cross section
for ‘virtual’ photons (see [3] (1)) as

σK
γ∗(ω, q2) = 8π3α

ω

q2⊥ +
(

ω
β

)2T⊥(ω, q2) . (20)

The expression (17) can now be written as σK
tot(σγ∗). At

this stage we can introduce the equivalent photon approx-
imation (EPA). In this approximation the q2-dependence
of σK

γ∗ is neglected and (20) is replaced by the cross sec-
tion for real photons (19). Now the integral over q⊥ would
diverge and we must introduce a suitable cutoff. Now we
can write the cross section in the equivalent photon ap-
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Fig. 3. T⊥ as a function of Q2 = −q2 for fixed ω-values. The
solid line shows T⊥ for ω = 2.1, the dashed line for ω = 3, the
dotted line for ω = 5 and the dash-dotted line for ω = 10
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Fig. 4. Tl as a function of Q2 for fixed ω-values. The solid line
shows Tl for ω = 2.1, the dashed line for ω = 3, the dotted line
for ω = 5 and the dash-dotted line for ω = 10

proximation as

σK
EPA =

Z2
Pα

π

∞∫
me+Ef

dω

q2
⊥max∫
0

d(q2⊥)
1
ω

× q2⊥[
q2⊥ +

(
ω
βγ

)2
]2 σK

γ (ω) . (21)

T⊥(ω, q2) as a function of the Lorentz-invariant variable
Q2 = −q2 and ω is given in Fig. 3. The momentum q2⊥ is
related to q2 by

q2 = ω2 − q2z − q2⊥ = −
(
ω

βγ

)2

− q2⊥ . (22)

From Fig. 3 one can extract the cutoff parameter for
the EPA calculation. For the range of ω-values contribut-
ing significantly to the total cross section (see Fig. 2) T⊥
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Fig. 5. The solid line shows the full SCA calculation results.
The dotted line shows EPA results with q2

⊥max = 4m2
e − ( ω

vγ
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For the photo-induced cross section in EPA calculation we used
the expression (23)
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Fig. 6. The solid line presents the part of (12) containing Tl

is almost constant up to Q2
max ≈ 4m2

e. Beyond this value
it falls off rapidly. Therefore q2⊥max is given by q2max =
Q2

max − ( ω
vγ )2. In Fig. 4 we also show Tl(ω, q2) as a func-

tion of Q2 = −q2 and ω which has a similar behavior
as T⊥. In Fig. 5 we compare EPA results with the SCA
calculation (12).

In the high energy region EPA fits correctly the total
cross section. For γ >> 1, the part of the integral for
the total cross section in (12) containing Tl tends to a
constant (see Fig. 6). Therefore for high energies of the
colliding particles σtot = σEPA +σconst. For high γ-values
we are in agreement with the EPA results of [4,5]. Due
to the ω-dependence of the cutoff q2⊥max = 4m2

e − ( ω
vγ )2

the EPA formula is valid down to γ = 3. But in the low
energy region (γ < 3) EPA fails. Further for small γ’s the
contribution of Tl to the total cross section can no longer
be neglected but has been ignored in the derivation of the
EPA formula (21).

An analytical expression for the photo cross section
(19) can be obtained from Sauter’s formula for the photo-
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Fig. 7. The solid line gives the results of the exact calculations
(19) and the dotted line the approximated analytical expression
(23) for ZP = ZT = 1

electric effect [16] by means of crossing symmetry:

σK
γ = 4πα6Z

5
T

m2
e

[
kf

(1 − εi)4

×
(
ε2i − 2

3
εi +

4
3

− 2 − εi

ki
ln(ki − εi)

)]
, (23)

with εi = Ei

me
and ki =

√
ε2i − 1. It is an approximation

for αZT << 1 and relativistic velocities of the unbound
electron. We compare the exact cross section (19) with the
analytic result (23). Very good agreement is expected for
ZT = 1. This is shown in Fig. 7. With (19) it is also possi-
ble to calculate σγ for αZT ∼ 1 where (23) overestimates
the cross section (see [4,17]).

V Conclusion

We calculate bound-free pair production in the semiclassi-
cal approximation (SCA) using exact Dirac-Coulomb wave
functions. We compare results for ion-ion collision with
experimental and theoretical data of [4,5,14,15] and find
good agreement with their results.

Our calculations have the advantage remaining valid
also when the condition Zα << 1 is not fulfilled, since
exact Dirac wave functions are used. We give expressions

for the cross sections already integrated over the angular
variables of the free electron (or positron). The radial form
factor integrals are evaluated quickly by means of recur-
rence relations as given in [11]. Therefore we are able to
sum over many partial waves and this allows the extension
of our calculations up to high values of γ.

We compare the exact results with those of the equiv-
alent photon approximation (EPA). We show that good
agreement can be obtained already starting at γ ≥ 3 if one
uses an ω-dependent cutoff of q⊥max =

√
Q2

max − ( ω
βγ )2

with Q2
max ≈ 4m2

e. This justifies the cutoff chosen in
[4,5] at high γ-values. At high energies the contribution
of the longitudinal photon tends to a constant. There-
fore the total cross section is found to be of the form
σtot = σEPA + σconst.
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